博客
关于我
【研究生】TensorFlow Lite发布重大更新!支持移动GPU、推断速度提升4-6倍
阅读量:309 次
发布时间:2019-03-03

本文共 2672 字,大约阅读时间需要 8 分钟。

转载于 量子位

TensorFlow用于移动设备的框架TensorFlow Lite发布重大更新,支持开发者使用手机等移动设备的GPU来提高模型推断速度。

在进行人脸轮廓检测的推断速度上,与之前使用CPU相比,使用新的GPU后端有不小的提升。在Pixel 3和三星S9上,提升程度大概为4倍,在iPhone 7上有大约有6倍。

为什么要支持GPU?

众所周知,使用计算密集的机器学习模型进行推断需要大量的资源。

但是移动设备的处理能力和功率都有限。虽然TensorFlow Lite提供了不少的加速途径,比如将机器学习模型转换成定点模型,但总是会在模型的性能或精度上做出让步。

而将GPU作为加速原始浮点模型的一种选择,不会增加量化的额外复杂性和潜在的精度损失。

在谷歌内部,几个月来一直在产品中使用GPU后端做测试。结果证明,的确可以加快复杂网络的推断速度。

在Pixel 3的人像模式(Portrait mode)中,与使用CPU相比,使用GPU的Tensorflow Lite,用于抠图/背景虚化的前景-背景分隔模型加速了4倍以上。新深度估计(depth estimation)模型加速了10倍以上。

在能够为视频增加文字、滤镜等特效的YouTube Stories和谷歌的相机AR功能Playground Stickers中,实时视频分割模型在各种手机上的速度提高了5-10倍。

对于不同的深度神经网络模型,使用新GPU后端,通常比浮点CPU快2-7倍。对4个公开模型和2个谷歌内部模型进行基准测试的效果如下:

使用GPU加速,对于更复杂的神经网络模型最为重要,比如密集的预测/分割或分类任务。

在相对较小的模型上,加速的效果就没有那么明显了,使用CPU反而有利于避免内存传输中固有的延迟成本。

如何使用?

安卓设备(用Java)中,谷歌已经发布了完整的Android Archive (AAR) ,其中包括带有GPU后端的TensorFlow Lite。

你可以编辑Gradle文件,用AAR替代当前的版本,并将下面的代码片段,添加到Java初始化代码中。

// Initialize interpreter with GPU delegate.GpuDelegate delegate = new GpuDelegate();Interpreter.Options options = (new Interpreter.Options()).addDelegate(delegate);Interpreter interpreter = new Interpreter(model, options);// Run inference.while (true) {  writeToInputTensor(inputTensor);  interpreter.run(inputTensor, outputTensor);  readFromOutputTensor(outputTensor);}// Clean up.delegate.close();

在iOS设备(用C++)中,要先下载二进制版本的TensorFlow Lite。

然后更改代码,在创建模型后调用ModifyGraphWithDelegate ( )。

// Initialize interpreter with GPU delegate.std::unique_ptr
 interpreter;InterpreterBuilder(model, op_resolver)(&interpreter);auto* delegate = NewGpuDelegate(nullptr);  // default configif (interpreter->ModifyGraphWithDelegate(delegate) != kTfLiteOk) return false;// Run inference.while (true) {  WriteToInputTensor(interpreter->typed_input_tensor
(0));  if (interpreter->Invoke() != kTfLiteOk) return false;  ReadFromOutputTensor(interpreter->typed_output_tensor
(0));}// Clean up.interpreter = nullptr;DeleteGpuDelegate(delegate);

(更多的使用教程,可以参见TensorFlow的官方教程,传送门在文末)

还在发展中

当前发布的,只是TensorFlow Lite的开发者预览版。

新的GPU后端,在安卓设备上利用的是OpenGL ES 3.1 Compute Shaders,在iOS上利用的是Metal Compute Shaders。

能够支持的GPU操作并不多。有:

ADD v1、AVERAGE_POOL_2D v1、CONCATENATION v1、CONV_2D v1、DEPTHWISE_CONV_2D v1-2、FULLY_CONNECTED v1、LOGISTIC v1

MAX_POOL_2D v1、MUL v1、PAD v1、PRELU v1、RELU v1、RELU6 v1、RESHAPE v1、RESIZE_BILINEAR v1、SOFTMAX v1、STRIDED_SLICE v1、SUB v1、TRANSPOSE_CONV v1

TensorFlow官方表示,未来将会扩大操作范围、进一步优化性能、发展并最终确定API。

完整的开源版本,将会在2019年晚些时候发布。

传送门

使用教程:

https://www.tensorflow.org/lite/performance/gpu

项目完整文档:

https://www.tensorflow.org/lite/performance/gpu_advanced

博客地址:

https://medium.com/tensorflow/tensorflow-lite-now-faster-with-mobile-gpus-developer-preview-e15797e6dee7

你可能感兴趣的文章
Nginx多域名,多证书,多服务配置,实用版
查看>>
nginx如何实现图片防盗链
查看>>
Nginx学习总结(12)——Nginx各项配置总结
查看>>
Nginx学习总结(13)——Nginx 重要知识点回顾
查看>>
Nginx学习总结(14)——Nginx配置参数详细说明与整理
查看>>
nginx学习笔记002---Nginx代理配置_案例1_实现了对前端代码的方向代理_并且配置了后端api接口的访问地址
查看>>
Nginx安装SSL模块 nginx: the “ssl” parameter requires ngx_http_ssl_module in /usr/local/nginx/conf/nginx
查看>>
Nginx安装与常见命令
查看>>
Nginx安装及配置详解
查看>>
nginx安装配置
查看>>
Nginx实战经验分享:从小白到专家的成长历程!
查看>>
Nginx实现反向代理负载均衡
查看>>
nginx实现负载均衡
查看>>
nginx常用命令及简单配置
查看>>
Nginx常用屏蔽规则,让网站更安全
查看>>
nginx开机启动脚本
查看>>
nginx异常:the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx/conf
查看>>
nginx总结及使用Docker创建nginx教程
查看>>
nginx报错:the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx/conf/nginx.conf:128
查看>>
nginx报错:the “ssl“ parameter requires ngx_http_ssl_module in usrlocalnginxconfnginx.conf128
查看>>